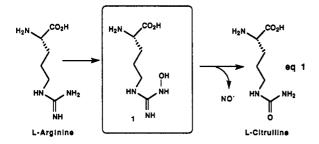
Methodology for the Preparation of N-Guanidino-Modified Arginines and Related Derivatives

Frank L. Wagenaar* and James F. Kerwin, Jr.


Neuroscience Research Division, Pharmaceutical Discovery, D-47H, Abbott Laboratories, Abbott Park, Illinois 60064

Received September 30, 1992 (Revised Manuscript Received May 25, 1993)

Methods for the preparation of N^G-modified arginines and N⁶-heterocyclic ornithines are described. The reactive cyanamide intermediate tert-butyl N^{α} -Boc- N^{δ} -cyano-L-ornithinate (2), prepared either by treatment of tert-butyl N^{α} -Boc-L-ornithinate (5) with cyanogen bromide or by dehydration of tert-butyl N^{α} -Boc-L-citrullinate (6), was utilized to prepare N^{G} -hydroxy-L-arginine, N^{G} -amino-Larginine, and $N^{\rm G}$ -methoxy-L-arginine. Intermediates 3a and 3b, derived from treatment of 5 with diphenyl cyanocarbonimidate (19), reacted with nitrogen nucleophiles to produce novel N^G-cyano-L-arginine and N^{δ}-heterocyclic L-ornithine analogs.

Introduction

While there has been much research on the synthesis of guanidines there has been little research on the modification of the guanidino group in arginine. Our interest in modified arginines stems from the recent discovery of nitric oxide synthases (NOS) in vascular tissues, neuronal cells, and macrophages.¹⁻⁸ A few prototypical NOS inhibitors have been identified: NG-methyl-L-arginine (NMA), N^G-nitro-L-arginine (NNA), and N^Gamino-L-arginine (NAA).⁹⁻¹² NG-Hydroxy-L-arginine (NHA, 1) had been proposed to be an intermediate in the biosynthesis of EDRF/nitric oxide (NO), eq 1;¹³ recently,

the intermediacy of NHA in the biosynthesis of NO from L-arginine has been demonstrated.¹⁴ Since L-arginine is utilized as a substrate by all of the known NOS isoenzymes. we hoped to derive modified arginines which would be

- (3) Bredt, D. S.; Snyder, S. H. Neuron 1992, 8, 3-11.
- (4) Snyder, S. H.; Bredt, D. S. Sci. Am. 1992, 68-77.
- (5) Kerwin, J. F., Jr.; Heller, M. Med. Res. Rev., in press.
 (6) Kerwin, J. F., Jr. In Annual Report in Medicinal Chemistry; Bristol, J., Ed.; Academic Press, Inc.: New York, 1992; Vol. 27; pp 69–78. (7) Forstermann, U.; Schmidt, H. H. H. W.; Pollock, J. S.; Sheng, H.;
- Mitchell, J. A.; Warner, T. D.; Nakane, M.; Murad, F. Biochem. Pharm. 1991, 42, 1849-1857
- (8) Moncada, S.; Palmer, R. M.; Higgs, E. A. Pharm. Rev. 1991, 43, 109-42
- (9) Lambert, L. E.; Whitten, J. P.; Baron, B. M.; Cheng, H. C.; Doherty,
 N. S.; McDonald, I. A. Life Sci. 1991, 48, 69-75.
- (10) Ishii, K.; Chang, B.; Kerwin, J. F. J.; Huang, Z. J.; Murad, F. Eur. J. Pharm. 1990, 176, 219–23. (11) Olken, N. M.; Rusche, K. M.; Richards, M. K.; Marletta, M. A.
- Biochem. Biophys. Res. Commun. 1991, 177, 828-833. (12) Fukuto, J. M.; Wood, K. S.; Byrns, R. E.; Ignarro, L. J. Biochem.
- Biophys. Res. Commun. 1990, 168, 458-465.
- (13) Marletta, M. A.; Yoon, P. S.; Iyengar, R.; Leaf, C. D.; Wishnok, J. S. Biochemistry 1988, 27, 8706–8711. (14) Stuehr, D. J.; Kwon, N. S.; Nathan, C. F.; Griffith, O. W.; Feldman,

P. L.; Wiseman, J. J. Biol. Chem. 1991, 266, 6259-6263.

0022-3263/93/1958-4331\$04.00/0

selective inhibitors of the NOS isoenzymes. We sought to apply methodologies for the preparation of substituted guanidines to the synthesis of modified arginine derivatives.

Because of the biochemical and pharmacological importance of NHA and NAA we sought a synthetic route to these compounds and other analogs. Several reports of the synthesis of NAA,¹⁵ NHA,^{16,17} and N^G-hydroxy- N^{G} -methyl-L-arginine^{17,18} have appeared. The protected cyanoornithine 2 has been utilized to prepare NHA^{17,19,20} and NG-hydroxy-NG-methyl-L-arginine¹⁷ for use as mechanistic probes. Our synthetic efforts also centered on the use of 2 for the preparation of NHA and NAA as well as other analogs.

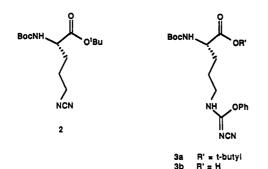
We also sought to explore 3a and 3b, derived from protected ornithine and diphenyl cyanocarbonimidate (19) as versatile intermediates to various modified arginines. Reagent 19 has been used to produce novel cyanoguanidines,²¹ heterocycles,^{21,22} and cyanoarginine-containing peptides.²³ The unique reactivity of 3a and 3b should allow modification of the guanidine position to provide a diverse range of arginine analogs and heterocyclic isosteres of arginine.

Results and Discussion

The preparation of NHA, NAA, and other N^G-alkyl and $N^{\rm G}$ -aminoarginine analogs relied on the reaction of the cyanamide function of 2 with the appropriate amines and hydrazines.

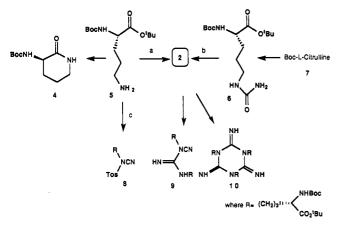
Compound 2 was obtained by the two methods in Scheme I. First, tert-butyl N^{α} -Boc- N^{δ} -Cbz-L-ornithinate¹⁶ was hydrogenated with Pd/C under 1 atm of H_2 to afford 5 in 98% yield. As previously reported for a similar

- (16) Frildman, P. L. Tetrahedron Lett. 1991, 32, 875-878.
 (17) Pufahl, R. A.; Nanjappan, P. G.; Woodard, R. W.; Marletta, M. A. Biochemistry 1992, 31, 6822-6828.
 (18) Feldman, P. L.; Griffith, O. W.; Hong, H.; Stuehr, D. J. J. Med.
- Chem. 1993, 36, 491-496.


 (19) Wallace, G. C.; Fukuto, J. M. J. Med. Chem. 1991, 34, 1746–1748.
 (20) Wallace, G. C.; Gulati, P.; Fukuto, J. M. Biochem. Biophys. Res. Commun. 1991, 176, 528-534.

(21) Webb, R. L.; Eggleston, D. S.; Labaw, C. S.; Lewis, J. J.; Wert, K. J. Heterocycl. Chem. 1987, 24, 275-278.
(22) Garratt, P. J.; Thorn, S. N. Tetrahedron 1993, 49, 165-176.
(23) Theobald, P.; Porter, J.; Rivier, C.; Corrigan, A.; Hook, W.; Siraganian, R.; Perrin, M.; Vale, W.; Rivier, J. J. Med. Chem. 1991, 34, 9205, 9409. 2395-2402

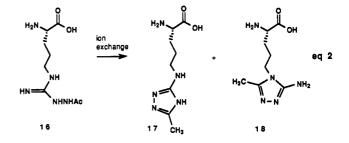
© 1993 American Chemical Society


Garthwaite, J. Trends Neurosci. 1991, 14, 60-7.
 Collier, J.; Vallance, P. Trends Pharm. Sci. 1989, 10, 427-31.

⁽¹⁵⁾ Griffith, O. W. U.S.Patent 5,059,712, 1991, 5 pp.

^a Key: (a) CNBr/TEA; (b) TsCl/pyridine; (c) TsCl/CH₂Cl₂.

compound,²⁴ 5 readily cyclized to the lactam 4, and therefore, the hydrogenolysis was generally done immediately prior to utilization.


Using a method similar to Pufahl et al.,¹⁷ treatment of 5 with solid cyanogen bromide (BrCN) or, more conveniently, as a solution of BrCN in CH₂Cl₂ led to the formation of 2 within minutes providing a 57% yield after chromatography.

A second method to prepare 2 utilized the dehydration of protected L-citrullines in pyridine.²⁵ Treatment of L-citrulline with di-tert-butyl dicarbonate provided compound 7 in 65% yield. Reaction of 7 with O-tertbutyldicyclohexylisourea provided 6 in 80% yield. Dehydration of 6 with p-toluenesulfonyl chloride (TsCl) was complete within 1 h to afford the cyanamide 2 in 68%yield after chromatography. When 2 prepared by this route was stored neat, a large proportion was converted to the dimeric material 9 and cyclic trimer $10.^{26}$ This instability prompted the storage of 2 in ethanolic solution which was stable indefinitely (>1 year) at -20 °C. Alternatively, a nucleophile could be added to the crude reaction mixture in excess. When the dehydration with TsCl was performed in CH₂Cl₂ the only isolable product was the tosylated cyanoornithine 8.27

Treatment of 2 with Me₃SiONH₂ in EtOH at room temperature (Scheme II) provided the protected NHA 11a wherein the Me₃Si group had been cleaved under the reaction conditions. Direct treatment of compound 2 with NH₂OH·HCl in EtOH provided 11a in 62-83% yield. To

confirm the structure of 11a, compound 2 was treated with ¹⁵NH₂OH HCl to yield 11b which displayed a ¹⁵N-¹³C coupling constant of 17.3 Hz, consistent with the product 11b.28 Treatment of 2 with BzlONH₂ overnight at room temperature provided 11c in 67% yield. Hydrogenation of 11c provided 11a in quantitative yield. The Boc and tert-butyl ester protecting groups of compounds 11a and 11b were then removed by acid treatment with HCl-dioxane to provide NHA (1a, b).

The reaction of 2 with NH2NH2 HCl in refluxing EtOH provided the protected NAA 12 in 88% yield. Deprotection of compound 12 in 6 N HCl followed by ion exchange provided 13 in 61% yield. The preparation of NAA by this method does not generate L-arginine as with reductive methods using $zinc^{29}$ or PtO_2^{15} nor N^{G} -(acetylamino)-L-arginine (16) which forms when NNA is reduced in the presence of HOAc.²⁹ In our hands, reduction of NAA was best performed in H₂O with 1 equiv of HCl to aid in solubility. Compound 16 further dehydrated to form 17 and 18 during ion-exchange purification (eq 2).

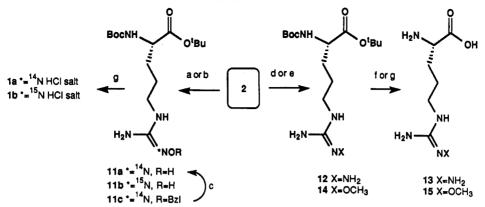
Intermediate 2 was also reacted with MeNHOH·HCl in EtOH at 60 °C to afford 14 in 97% yield. Subsequent treatment of 14 with 4 N HCl in dioxane provided a 65%yield of $N^{\rm G}$ -methoxy-L-arginine (15).

To establish the enantiomeric purity of NHA and NAA produced by these methods, samples of the D-enantiomer of each compound were prepared using the same methodology, and the products were analyzed using chiral HPLC. The enantiomeric excesses observed were 97.8% and >98% for L-NHA and L-NAA, respectively.

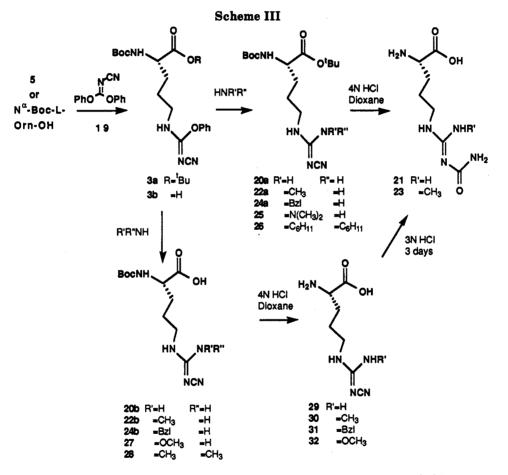
Initial efforts to prepare N^{G} -cyano-L-arginine utilized the intermediate 3a derived from 5 and diphenyl N-cyanocarbonimidate (19) (Scheme III). The reaction of tertbutyl N^{α} -Boc-L-ornithinate and 19 proceeded smoothly to provide a 76% yield of product. Compound 3a was recrystallized from hexane-EtOAc and was stable at room temperature.

Compound 3a was treated with NH₄OH in EtOH at 60 °C overnight or, alternatively, with a saturated solution of NH₃ in EtOH to yield the protected parent cyano-Larginine 20a. Deprotection was attempted with a variety of acidic reagents: TFA/CH₂Cl₂, 6 N HCl, 4 M HCl in dioxane or HOAc, and Me₃SiI. Regardless of the method. two product spots were always detected by TLC, and the crude product was difficult to characterize unambiguously. In several instances an ion at m/e 218 was observed indicating hydrolysis of the N-cyano function to the N^{G} carboxamide 21, consistent with a recent literature report.23

Compound 3a reacted with 40% aqueous CH₃NH₂ to provide the protected N^{G} -cyano- $N^{G'}$ -methylarginine 22a

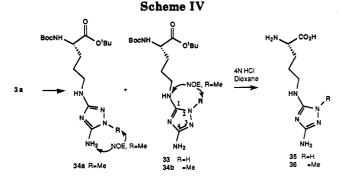

⁽²⁴⁾ Maguire, M. P.; Feldman, P. L.; Rapoport, H. J. Org. Chem. 1990, 55.948-955.

⁽²⁵⁾ Ranganathan, D.; Rathi, R. J. Org. Chem. 1990, 55, 2351-2354.
(26) Kurzer, F. J. Chem. Soc. 1949, 3033-3038.
(27) Kurzer, F. J. Chem. Soc. 1949, 1034-1038.


⁽²⁸⁾ Levy, G. C.; Lichter, R. L. Nitrogen-15 Nuclear Magnetic Resonance Spectroscopy; Wiley-Interscience: New York, 1979; pp 119-129.

⁽²⁹⁾ Turan, A.; Patthy, A.; Bajusz, S. Acta. Chim. (Budapest) 1975, 85, 327-332.

Scheme II^a


^a Key: (a) TMSONH₂ or HO*NH₂HCl/TEA; (b) BzlONH₂; (c) H₂/Pd/C; (d) NH₂NH₂·HCl; (e) MeONH₂·HCl; (f) 6 N HCl; (g) 4 N HCl/ dioxane.

in 96% yield. Removal of the Boc protecting group with 4 N HCl yielded 15% of 23. Reaction of 3a with BzlNH₂ in refluxing EtOH for 3 h gave a quantitative yield of 24a. Treatment with Me₂NNH₂ at room temperature provided a 70% yield of 25. Compound 3a could also be reacted with the secondary amine dicyclohexylamine to provide a 31% yield of 26.

Due to hydrolysis of the cyano function of 20a and 22a, an alternative intermediate 3b was prepared from Boc-L-ornithine and 19 in 79% yield. Treatment of 3b with NH₃ in EtOH at room temperature yielded the 20b in 84%. TFA treatment of 20b in CH₂Cl₂ for 5 min resulted in complete deprotection providing 29 in 90% purity. A sample of 29, dissolved in 1 N HCl, slowly transformed to compound 21. Treatment of 20b with Me₃SiI yielded only 21. Deprotection of 20b with HCl in dioxane at room temperature for 5 min yielded homogeneous 29 as a very hygroscopic solid. Compound 29 was neutralized by dissolution in 1 M NH₄HCO₃ and purified by ion exchange to provide a nonhygroscopic solid after lyophilization. Reaction of 3b with CH₃NH₂ in EtOH resulted in 22b in 55% yield. Compound 22b when treated with HCl provided a quantitative yield of 30. Similarly, 3b was reacted with BzlNH₂ to provide 24b in 55% yield and with CH₃ONH₂·HCl and Et₃N in a sealed tube at 60 °C to provide 27 in 75% yield. Compounds 24b and 27 were deprotected by HCl in dioxane to provide 31 in 62% yield and 32 in 50% yield, respectively. Treatment of 3b with saturated ethanolic solution of (CH₃)₂NH provided a 32% yield of 28.

Treatment of **3a** with hydrazines lacking 1,1-disubstitution resulted in cyclic products arising from attack of

the intermediate aminoguanidine at the cyano function. Reaction of 3a with NH₂NH₂ yielded 62% of 33 (Scheme IV). Treatment of 3a with MeNHNH₂ resulted in 34aand 34b. The regiochemistry of the methylhydrazine addition was determined by a 2D-ROESY NMR study. An NOE was observed between ¹NH-²NCH₃ in 34b but not in 34a; similarly, an NOE between the ${}^{4}NH_{2}-{}^{3}NCH_{3}$ was observed in 34a and not in the other isomer. The cyclized compounds 33 and 34b could be deprotected to provide 35 and 36 in 78% and 79% yield, respectively.

The D-enantiomer of compound 35 was also synthesized using the same methodology, and analysis by chiral HPLC demonstrated an enantiomeric excess for L-35 of >98%.

In conclusion, NHA and NAA have been prepared by the aminolysis of tert-butyl N^{α} -Boc- N^{δ} -cyano-L-ornithinate (2). Intermediate 2 has been prepared by two routes in good yield and can be reacted with nitrogen nucleophiles directly in situ or after purification. Use of intermediate 2 provides an attractive avenue for NHA synthesis and allows for convenient preparation of a variety of additional derivatives in good yields. The methodology provides significant advantages over the direct reduction of NNA for NAA preparation in ease of synthesis and purification and in the versatility which should allow for the synthesis of a wide range of NAA derivatives. Methodology utilizing intermediates 3a and 3b allows for the preparation N^{G} cyano-L-arginine and a variety of related analogs and, when ring closure on the cyano function is possible, Noheterocyclic ornithine derivatives. Hydrolysis of the N^{G} cyano function under the acidic conditions used to remove protecting groups was minimized by using intermediate 3b which allowed for isolation of nonhygroscopic products after ion-exchange chromatography. Both methods, from intermediates 2 or 3a, have been demonstrated to provide product without loss of enantiomeric purity and should be applicable to a wide variety of amines and hydrazines. The biological data for these compounds will be reported elsewhere.

Experimental Section

Melting points (uncorrected) were determined in a Thomas-Hoover capillary melting point apparatus or a Buchi 510 capillary melting point apparatus. TLC was performed on Merck precoated silica gel 60 F₂₅₄ plates. Silica gel (E. Merck; 230-400 mesh) was used for flash chromatography eluting with 5-10 psi of air pressure. EtOAc-PAW elution solvent was the specified ratio of EtOAc to a stock solution of 10:3:5 pyridine-HOAc-H₂O. Chiral HPLC was performed using a Daicel Crownpack CR(+) 4.6 \times 150-mm column and 0.01 M perchloric acid mobile phase at 0.5 mL/min flow rate at 5 °C and UV detection at 200 nm. Ion exchange was performed with commercial Dowex 50 \times 8-100 resin (50-100 mesh) washed with 1 N NH₄OH and H₂O and used immediately (NH4 form) or reprotonated with 1 N HCl and H_2O for storage or use (H⁺ form). Optical rotations were

determined in a Perkin-Elmer 241 polarimeter using the sodium D line. Proton NMR spectra were obtained at 300 MHz in CDCl₃ referenced to Me₄Si at room temperature unless otherwise indicated; spectra obtained in D₂O were referenced to Me₃SiCD₂-CD₂CO₂Na (TSP). ¹⁵N NMR spectra utilized NH₄NO₂ in 10% HNO₃ as an external standard with NH₄ at 21.6 ppm. Mass spectra were obtained using desorption chemical ionization (DCI), fast atom bombardment (FAB+) or plasma desorption MS (PDMS). Solvents and other reagents were reagent grade and were used without further purification unless otherwise noted.

Na-Boc-L-citrulline (7).^{30,31} L-Citrulline (12g, 69 mmol) was dissolved in 150 mL of 2:1 EtOH-H₂O and treated with di-tertbutyl dicarbonate (18 g, 82 mmol) and Et₈N (11.4 mL, 82 mmol) at room temperature. After 1 h, the reaction became homogeneous. The reaction was acidified with 1 MH₃PO₄ after 3 h, and the product was extracted into CH₂Cl₂. The organic extracts were dried over MgSO₄, filtered, and evaporated to provide 12.5 g, 45 mmol, 65% yield. Further extraction of the aqueous layer yielded an additional 3.4 g of desired product (12.4 mmol, 18%): $R_f 0.2$ (80:20:1 CHCl₃-MeOH-NH₄OH); ¹H NMR (DMSO-d₆) δ 1.38 (s, 11H), 1.47-1.69 (m, 2H), 2.88-2.96 (m, 2H), 3.80-3.87 (m, 1H), 5.40 (s, 2H), 5.96 (t, J = 5 Hz, 1H), 7.06 (d, J = 8 Hz, 1H), 11.5 (bs, 1H); ¹³C NMR (75.5 MHz, DMSO-d₆) δ 26.8, 28.2, 28.3, 38.8, 53.4, 77.9, 155.5, 158.8, 174.2; MS (FAB+) calcd for $C_{11}H_{22}N_3O_5 m/e$ 276.1559, found 276.1560; MS (DCI) 276 (M + H)⁺, 293 (M + NH₄)⁺, 237; $[\alpha]^{23}_{D}$ –0.9° (c = 1.03, MeOH).

tert-Butyl N^a-Boc-L-citrullinate (6). Compound 7 (10 g, 36 mmol) was dissolved in 200 mL of 1:1 CH₂Cl₂-dioxane and O-tert-butyl dicyclohexylisourea (13 mL, 54 mmol) added. After 1 day, an additional 7 mL of the isourea was added and the reaction was stirred for 3 days. After filtration of the precipitate, the solvent was evaporated in vacuo and the resulting residue purified by preparative HPLC (silica gel eluted with EtOAc) to yield 9.6 g, 29 mmol, 80%: Rf 0.15 (1:2 hexane-EtOAc); oil; ¹H NMR δ 1.43 (s, 9H), 1.47 (s, 9H), 1.53–1.85 (m, 4H), 3.14–3.21 (m, 2H), 4.08-4.17 (m, 1H), 4.88 (s, 2H), 5.38 (d, J = 8 Hz, 1H), 5.59 (bs, 1H); ¹³C NMR (75.5 MHz, CD₃OD) δ 27.7, 28.3, 28.7, 30.0, 40.5, 55.7, 80.4, 82.5, 158.0, 162.2, 173.6; MS (DCI) 332 (M + H)+, 276, 232, 220; $[\alpha]^{28}$ _D -19.3° (c = 1.18, MeOH). Anal. Calcd for C15H29N3O5 0.2 H2O: C, 53.78; H, 8.85; N, 12.54. Found: C, 53.83; H, 8.56; N, 12.55.

tert-Butyl Na-Boc-Na-cyano-L-ornithine (2). Compound 6 (2.2 g, 6.6 mmol) was dissolved in 10 mL of pyridine, and TsCl (3.8 g, 20 mmol) in pyridine (10 mL) was added dropwise over $5 \min$ at 5 °C. After 30 min, the solvent was evaporated and the resulting crude residue chromatographed on silica gel eluted with 4:1 hexanes-EtOAc to yield 1.41 g, 4.5 mmol, 68%. When stored neat as an oil, the product dimerized to give after chromatography 112 mg of monomer 2 and 563 mg of dimer 9. The monomer could be stored indefinitely in EtOH at -20 °C. For 2: $R_{f}0.6$ (1:1 hexane-EtOAc); R_f 0.6 (9:1 CHCl₃-MeOH); ¹H NMR δ 1.45 (s, 9H), 1.48 (s, 9H), 1.68-1.74 (m, 3H), 1.81-1.92 (m, 1H), 3.13-3.20 (m, 2H), 4.10-4.19 (m, 2H), 5.16-5.19 (m, 1H); ¹⁸C NMR (75.5 MHz, CDCl₃) § 25.2, 28.0, 28.3, 30.0, 45.6, 53.1, 80.0, 82.4, 116.3, 155.5, 171.3; IR (CHCl₃) 2220 cm⁻¹; MS (FAB⁺) calcd for C15H22N3O4 m/e 314.2080, found 314.2081; MS (DCI) 314 (M + H)⁺, 331 (M + NH₄)⁺, 275. For 9: purified by column chromatography on silica gel eluted with 2:1 hexane-EtOAc; $R_f 0.25$ (1:1 hexanes-EtOAc); ¹H NMR δ 1.44 (s, 9H), 1.47 (s, 9H), 1.60-1.70 (m, 2H), 1.72-1.86 (m, 2H), 3.07-3.18 (m, 1H), 3.21 (bs, 2H), 3.56-3.63 (m, 1H), 4.13 (bs, 1H); ¹⁸C NMR (75.5 MHz, CDCl₃) $\delta\,23.8,\,24.7,\,25.8,\,28.0,\,28.3,\,29.3,\,29.7,\,30.4,\,31.2,\,41.6,\,46.1,\,46.5,$ 47.0, 53.3, 53.6, 60.3, 79.7, 81.9, 82.2, 111.6, 143.8, 151.4, 155.4, 171.4, 172.0; IR (CHCl₃) 2218 cm⁻¹; MS (DCI) 627 (M + H)⁺; $[\alpha]^{23}D^{-16.4^{\circ}}$ (c = 0.7, MeOH). For 10: also purified by column chromatography eluted with 1:1 hexane-EtOAC; mp 67-70 °C; $R_f 0.2$ (1:2 hexanes-EtOAc); ¹H NMR δ 1.45 (s, 9H), 1.47 (s, 9H), 1.63-1.9 (m, 4H), 3.9-4.0 (m, 2H), 4.18-4.26 (m, 1H), 5.33 (d, J = 8 Hz, 1H); ¹³C NMR (75.5 MHz, CDCl₈) δ 22.4, 27.9, 28.3, 30.1, 43.8, 53.3, 79.6, 81.9, 146.4, 155.5, 171.6; MS (FAB+) 940 (M + H)⁺; $[\alpha]^{23}_{D} - 13.2^{\circ}$ (c = 1.3, MeOH). Anal. Calcd for

⁽³⁰⁾ Eisele, K. Hoppe-Seyler's Z. Physiol. Chem. 1975, 356, 845-54. Previous preparations utilized Boc azide. (31) Visser, S.; Kerling, K. E. T. Recl. Trav. Chim. Pays-Bas 1970, 89,

^{880-4.}

 $C_{45}H_{81}N_9O_{12}:$ C, 57.49; H, 8.68; N, 13.41. Found: C, 57.20; H, 8.74; N, 13.17.

Synthesis of 2 from 5. Prepared by modification of the literature method¹⁷ wherein compound 5 (5.8 g, 20 mmol) was dissolved in 250 mL of Et₂O and BrCN (7.3 mL, 22 mmol, 3 M in CH₂Cl₂) was added in one portion, followed by Et₃N (3.1 mL, 22 mmol) added over 10 min. A precipitate formed immediately. After 1 h, the crude reaction mixture was placed on silica gel and eluted with 2:1 hexanes-EtOAc to yield 2.90 g, 9.2 mmol, 46%: R_f 0.5 (1:1 hexanes-EtOAc); R_f 0.8 (Et₂O); ¹H NMR δ 1.44 (s, 9H), 1.48 (s, 9H), 1.54–1.93 (m, 4H), 3.13–3.20 (m, 2H), 4.13–4.25 (m, 2H), 5.14–5.21 (m, 1H); ¹³C NMR (75.5 MHz, CDCl₃) δ 25.2, 28.0, 28.3, 30.1, 45.6, 53.0, 80.0, 82.4, 116.2, 155.6, 171.3; IR (CHCl₃) 2224 cm⁻¹; MS (DCl) 314 (M + H)⁺, 331 (M + NH₄)⁺, 275; $[\alpha]^{23}_{D}$ -19.6° (c = 0.85, EtOH).

tert-Butyl Na-Boc-Na-(p-toluenesulfonyl)-Na-cyano-L-ornithinate (8). Compound 6 (106 mg, 0.32 mmol) was dissolved in 5 mL of CH₂Cl₂, treated with Et₃N (167 μ L, 1.2 mmol) and TsCl (122 mg, 0.64 mmol), and then refluxed for 3 h. Additional TsCl (122 mg) and Et₃N (167 μ L) were added, and reflux was continued overnight. After cooling, the crude reaction mixture was chromatographed on silica gel eluted with 3:1 hexanes-EtOAc to yield 149 mg, 0.305 mmol, 96%: mp 60-70 °C; Rf 0.6 (2:1 hexane-EtOAc); ¹H NMR δ (s, 9H), 1.46 (s, 9H), 1.6-1.85 (m, 4H), 2.48 (s, 3H), 3.41 (t, J = 6 Hz, 2H), 4.16 (m, 1H), 5.06 (d, J = 7 Hz, 1H), 7.42 (d, J = 8 Hz, 2H), 7.84 (dt, J = 8, 1 Hz, 2H); 13C NMR (75.5 MHz, CDCl₃) & 21.7, 23.8, 27.9, 28.3, 29.5, 49.8, 53.0, 79.9, 82.5, 108.3, 127.8, 130.5, 133.4, 146.3, 155.8, 172.1; MS (DCI) calcd for $C_{22}H_{34}N_3O_6S m/e$ 468.2168, found 468.2167; MS (DCI) 468 (M + H)⁺, 485 (M + NH₄)⁺, 429, 412, 373; $[\alpha]^{23}$ _D-12.3° (c = 1.15, MeOH).

tert-Butyl N²-Boc-N²-hydroxy-L-arginate (11a). In a modification of the literature method,¹⁷ intermediate 2 (500 mg, 1.6 mmol) was dissolved in 4 mL of EtOH and treated with NH₂-OH-HCl (222 mg, 3.2 mmol) and Et₃N (223 μ L, 1.6 mmol) for 1 h. The solvents were evaporated and the residue chromatographed on silica gel eluted with 6:1 CH₂Cl₂-EtOH to yield 379 mg, 1.1 mmol, 66%: R_f 0.3 (5:1 EtOAc-PAW); ¹H NMR (CD₃-OD) δ 1.43 (s, 9H), 1.46 (s, 9H), 1.62-1.83 (m, 4H), 3.21-3.27 (m, 2H), 3.93-3.98 (m, 1H); ¹³C NMR (75.5 MHz, CD₃OD) δ 26.5, 28.3, 28.8, 29.8, 41.9, 55.4, 80.6, 82.8, 158.1, 160.3, 173.3; MS (DCI) calcd for C₁₅H₃₁N₄O₅ m/e 347.2294, found 347.2285; MS (DCI) 347 (M + H)⁺; [α]²³D -18.2° (c = 1.1, MeOH).

Synthesis of 11a from 6. Compound 6 (674 mg, 2.0 mmol) was dissolved in 20 mL of pyridine and treated with TsCl (763 mg, 4.0 mmol). After 1 h, NH₂OH-HCl (278 mg, 4.0 mmol) was added and the reaction stirred overnight. After evaporation of the solvent, the residue was chromatographed on silica gel eluted with 10:1 EtOAc-PAW to yield 447 mg, 1.29 mmol, 65%: R_f 0.3 (5:1 EtOAc-PAW).

Synthesis of 11a from 11c. Compound 11c (260 mg, 0.60 mmol) was dissolved in 50 mL of MeOH and treated with 50 mg of 10% Pd/C and 1 atm of hydrogen gas overnight. The reaction mixture was filtered through Celite and concentrated, and the crude product was chromatographed on silica gel eluted with 10:1 EtOAc-PAW to yield 158 mg, 0.46 mmol, 77%: R_f 0.3 (5:1 EtOAc-PAW); ¹H and ¹³C NMR spectra were consistent with previously prepared material; MS (FAB⁺) calcd for C₁₅H₃₁N₄O₅ m/e 347.2294, found 347.2296; MS (DCI) 347 (M + H)⁺, 331; [α]²³_D -15.6° (c = 0.57, MeOH).

Synthesis of 11a via Me₃SiONH₂. Intermediate 2 (200 mg, 0.64 mmol) was dissolved in 20 mL of EtOH and treated with Me₃SiONH₂ (135 mg, 1.28 mmol) at ambient temperature overnight. The crude residue from solvent evaporation was chromatographed on silica gel eluted with 5:1 EtOAc-PAW to provide 183 mg, 0.53 mmol, 83%; R_f 0.3 (5:1 EtOAc-PAW); ¹H NMR was consistent with previously prepared material; MS (FAB⁺) 347 (M + H)⁺, 331.

Synthesis of D-Isomer of 11a. The D-isomer of compound 5 (300 mg, 1.0 mmol) was dissolved in 10 mL of Et₂O and treated with BrCN (381 mL, 1.14 mmol) and Et₃N (294 μ L, 2.1 mmol). After 10 min, the reaction was diluted with 10 mL of EtOH and treated with NH₂OH HCl (102 mg, 1.6 mmol and Et₃N (223 μ L, 1.6 mmol). After 2 h, the crude reaction mixture was chromatographed on silica gel eluted with 5:1 EtOAc–PAW to provide 217 mg, 0.62 mmol, 62% yield: R_f 0.3 (5:1 EtOAc–PAW); ¹³C NMR

was consistent with the spectrum of 11a; MS(DCI) 347 (M + H)⁺, 331; $[\alpha]^{23}_{D}$ +18.0° (c = 1.1, MeOH).

tert-Butyl N^a-Boc.¹⁵N^G-hydroxy-L-arginate (11b). Compound 6 (155 mg, 0.47 mmol) was dissolved in 2 mL of pyridine and treated with TsCl (95 mg, 0.50 mmol) for 45 min at room temperature. ¹⁵NH₂OH-HCl (70 mg, 1.0 mmol) was then added and the reaction warmed to 60 °C for 2 h. The crude residue after concentration was chromatographed on silica gel eluted with 5:1 EtOAc-PAW to yield 87 mg, 0.25 mmol, 53%: R_{f} 0.3 (5:1 EtOAc-PAW); ¹H NMR (500 MHz, CDCl₃) δ 1.44 (s, 9H), 1.48 (s, 9H), 1.59–1.70 (m, 3H), 1.80–1.86 (m, 1H), 3.08–3.13 (m, 1H), 3.19 (bs, 1H), 4.18 (bs, 1H), 5.25–5.28 (m, 1H); ¹³C NMR (75.5 MHz, CDCl₃) δ 25.0, 27.9, 28.3, 30.0, 40.7, 53.5, 79.8, 82.0, 156.1, 157.9 (d, J = 14.7 Hz), 171.9; ¹⁵N NMR (30.4 MHz, CDCl₃) δ 205.0; MS (FAB⁺) calcd for C₁₆H₃₁ ¹⁴N₃ ¹⁵N₁O₅ m/e 348.2265; found 348.2265; MS (DCl) 348 (M + H)⁺, 332, 292; [α]²³D - 16.7° (c = 0.15, MeOH).

tert-Butyl N²-Boc-N²-(benzyloxy)-L-arginate (11c). Compound 6 (115 mg, 0.35 mmol) was dissolved in 2 mL of pyridine and treated with TsCl (66 mg, 0.35 mmol) followed, after 45 min, by the addition of BzlONH₂·HCl (560 mg, 3.5 mmol). After stirring overnight, the crude residue after solvent evaporation was chromatographed on silica gel eluted with 10:1 EtOAc-PAW to yield 103 mg, 0.24 mmol, 67%: R_f 0.75 (9:1 CHCl₃-MeOH); R_f 0.75 (5:1 EtOAc-PAW); ¹H NMR (CD₃OD) δ 1.44 (s, 9H), 1.46 (s, 9H), 1.53-1.66 (m, 3H), 1.72-1.78 (m, 1H), 3.12 (t, J = 7 Hz, 2H), 3.92-3.96 (m, 1H), 4.83 (s, 2H), 7.32-7.46 (m, 5H); ¹³C NMR (75.5 MHz, CD₃OD) δ 26.4, 28.3, 28.7, 29.8, 41.8, 55.4, 79.2, 80.5, 82.7, 126.9, 129.5, 129.7, 129.8, 130.5, 136.8, 158.1, 159.4, 173.3; MS (FAB⁺) calcd for C₁₇H₃₇N₆O₇ m/e 437.2724, found 437.2733; MS (DCI) 437 (M + H)⁺, 381, 325; [α]²³D-7.2° (c = 2.23, MeOH).

N^G-Hydroxy-L-arginine Dihydrochloride Salt (1a). In a similar manner to that of Feldman,¹⁶ compound 11a (1.1 g, 3.18 mmol) was treated with 10 mL of 4 N HCl in dioxane for 24 h. The resulting solid was collected and rinsed with Et₂O and then dried in vacuo to yield 0.7 g, 2.9 mmol, 91%: mp 178-80 °C dec; $R_f 0.4$ (6:2:2 CH₃CN-AcOH-H₂O); ¹H NMR (D₂O) δ 1.64-1.88 (m, 2H), 1.91-2.11 (m, 2H), 3.32 (t, J = 6 Hz, 2H), δ 1.04 (-1.88 (m, 2H), 1.91-2.11 (m, 2H), δ 2.67, 29.9, 43.2, 55.6, 161.6, 174.8; MS (FAB⁺) calcd for $C_8H_{15}N_4O_3m/e$ 191.1144, found 191.1144; MS (DCl) 191 (M + H)⁺; [α]²⁸_D + 21.1° (c = 1.07, MeOH).³² Anal. Calcd for C₆H₁₄N₄O₃·2HCl-0.1pyridine: C, 28.05; H, 6.05; N, 20.63. Found: C, 28.04; H, 6.00; N, 20.64.

Synthesis of the D-Enantiomer of 1a. Compound D-11a (100 mg, 0.28 mmol) was treated with 2 mL of 4 N HCl in dioxane in a manner similar to that for the L-isomer to provide 60 mg, 0.23 mmol, 82% yield: R_f 0.4 (6:2:2 CH₃CN-HOAc-H₂O); ¹H and ¹³C NMR correlated with L-1a; MS (DCI) 191 (M + H)⁺; $[\alpha]^{23}_{\rm D}$ -17.8 (c = 1.16, MeOH). Anal. Calcd for C₆H₁₄N₄O₃·2HCl: C, 27.39; H, 6.13; N, 21.29. Found: C, 27.29; H, 5.89; N, 20.91.

Chiral HPLC results: D-1a, $t_R = 4.9 \text{ min}$, L-1a, $t_R = 7.7 \text{ min}$. For L-1a: peak area ratio L/D 98.9/1.1 = 97.8% ee. For D-1a: no L-isomer detected, >98% ee.

¹⁶N^G-Hydroxy-L-arginine (1b).¹⁷ Compound 11b (92 mg, 0.27 mmol) was treated with 10 mL of 4 N HCl in dioxane for 23 h. The resulting solid was filtered under N₂ and rinsed with Et₂O to yield 58.3 mg, 0.22 mmol, 81%: R_f 0.5 (6:2:2 CH₃CN-AcOH-H₂O); R_f 0.5 (1:2 EtOAc-PAW); ¹H NMR (D₂O) δ 1.68–1.92 (m, 2H), 1.96–2.16 (m, 2H), 3.36 (t, J = 7 Hz, 2H), 4.16 (t, J = 6 Hz, 1H); ¹³C NMR (75.5 MHz, D₂O) δ 26.7, 29.9, 43.2, 55.6, 161.6 (d, J = 17.3 Hz), 174.8; ¹⁵N NMR (30.4 MHz) δ 135.2; MS (FAB⁺) calcd for C₆H₁₈¹⁴N₃¹⁵N₁O₃ m/e 192.1114, found 192.113; MS (FAB⁺) 192 (M + H)⁺; $[\alpha]^{28}_{D} + 21.6^{\circ}$ (c = 0.55, MeOH).

tert-Butyl N^{α} -Boc- N^{α} -amino-L-arginate (12). Intermediate 2 (462 mg, 1.5 mmol) was dissolved in 10 mL of EtOH and treated with NH₂NH₂·HCl (103 mg, 1.5 mmol) at reflux. After 1 day, additional NH₂NH₂·HCl (206 mg) was added and reflux continued for 3 h. After the solution was cooled to room temperature, the solvent was evaporated and the residue was chromatographed on silica gel eluted with 5:1 EtOAc-PAW to yield 503 mg, 1.32 mmol, 88%: R_f 0.15 (5:1 EtOAc-PAW); ¹H NMR δ 1.43 (s, 9H), 1.47 (s, 9H), 1.56–1.83 (m, 4H), 3.1 (bs, 1H), 3.32–3.43 (m, 1H),

⁽³²⁾ The residual pyridine was carried from the purification of 11a (from 5) and was also observed in the ¹H NMR.

4.12 (bs, 1H), 5.32 (bs, 0.5H), 5.79 (bs, 1H), 6.0 (bs, 0.5H), 6.45 (bs, 1H); ¹³C NMR (75.5 MHz, CDCl₃) δ 25.0, 27.9, 28.3, 30.2, 40.4, 53.1, 79.9, 82.2, 158.7, 171.8, 178.1; MS (FAB⁺) calcd for C₁₅H₃₂N₅O₄ *m/e* 346.2454, found 346.2452; MS (FAB⁺) 346 (M + H)⁺, 290, 234; [α]²³D -16.7° (*c* = 0.70, MeOH). Anal. Calcd for C₁₅H₃₁N₅O₄·2.0H₂O·0.25HCl₂0.75Pyr-1.0HOAc: C, 48.87; H, 8.50; N, 15.79. Found: C, 48.79; H, 8.82; N, 15.45.

Synthesis of the D-Enantiomer of 12. In a manner similar to that for the L-12, compound D-5 (150 mg, 0.52 mmol) was treated with BrCN (173 μ L, 0.52 mmol) and Et₃N (145 μ L, 1.04 mmol) followed by NH₂NH₂·HCl to provide, after chromatography, 91 mg, 0.26 mmol, 50% yield: R_f 0.3 (5:3 EtOAc-PAW); MS (DCI) 346 (M + H)⁺, 317, 289; [α]²³D + 16.5 (c = 0.77, MeOH).

N^G-**Amino-L-arginine (13).** Compound 12 (100 mg, 0.263 mmol) was treated with 5 mL of 6 N HCl for 30 min. The crude reaction mixture was purified by ion exchange (NH₄ form) eluted with 0.5 M NH₄OAc to yield 50 mg, 0.19 mmol, 72%: R_f 0.4 (6:2:2 CH₃CN-AcOH-H₂O); ¹H NMR (D₂O) δ 1.56–1.80 (m, 2H), 1.88–1.95 (m, 2H), 1.92 (s, 3H, acetate), 3.37 (t, J = 6 Hz, 2H), 3.77 (t, J = 6 Hz, 1H); ¹³C NMR (75.5 MHz, D₂O) δ 26.9, 30.4, 43.0, 57.2, 160.8, 177.3; MS (FAB-) 188; $[\alpha]^{23}_D$ +7.4 (c = 0.46, MeOH). Anal. Calcd for C₆H₁₈N₅O₂·1.5·H₂O·1.25HOAc: C, 35.05; H, 7.96; N, 24.04. Found: C, 34.92; H, 7.41; N, 24.29.

Synthesis of the D-Enantiomer of 13. The D-enantiomer of 12 (29 mg, 0.08 mmol) was treated with 5 mL of 4 N HCl for 4 h. The reaction mixture was diluted with H_2O and lyophilized to provide 8.3 mg, 0.03 mmol, 40% yield: R_f 0.4 (6:2:2 CH₃CN-HOAc-H₂O); ¹H NMR spectral data correlated with L-13 previously prepared; MS (FAB⁺) 190 (M + H)⁺; crude product was used directly for chiral HPLC.

Chiral HPLC results: D-13, $t_R = 6.6 \text{ min}$; L-13, $t_R = 9.9 \text{ min}$. For L-13: no D-enantiomer detected, >98% ee. For D-13: no L-enantiomer detected, >98% ee.

tert-Butyl N°-Boc-N^G-methoxy-L-arginate (14). Intermediate 2 (310 mg, 1.0 mmol) in 30 mL of EtOH was treated with MeONH₂·HCl (417 mg, 5.0 mmol) and Et₃N (697 μ L, 5.0 mmol). No reaction was noted after 12 h at 23 °C, and the reaction was heated to reflux for 5 h. After evaporation of the solvent, the residue was chromatographed on silica gel eluted with 5:1 EtOAc-PAW. The product fractions were combined, concentrated, mixed with H₂O, and lyophilized to give 407 mg, 0.97 mmol, 97%: R_f 0.25 (5:1 EtOAc-PAW); ¹H NMR (CD₃OD) δ 1.44 (s, 9H), 1.46 (s, 9H), 1.6–1.88 (m, 4H), 3.17–3.22 (m, 2H), 3.72 (s, 3H), 3.94–3.99 (m, 1H); ¹³C NMR (75.5 MHz, CD₃OD) δ 26.3, 28.2, 28.7, 29.8, 41.8, 55.4, 64.8, 80.5, 82.7, 158.1, 159.4, 173.3; MS (FAB⁺) calcd for C₁₆H₃₃N₄O₅ m/e 361.2451, found 361.2445; MS (DCI) 361 (M + H)⁺; $[\alpha]^{23}_{D}$ –10.4° (c = 1.12, MeOH).

Nⁱ-Methoxy-L-arginine (15). Compound 14 (230 mg, 0.64 mmol) was treated with 10 mL of 4 N HCl in dioxane for 2 h during which time the reaction mixture became heterogeneous. The reaction mixture was concentrated, and the residue was purified by ion exchange (NH₄ form) eluted with 0.1 M NH₄-HCO₃ to give 100.5 mg, 0.42 mmol, 65% yield. A portion (80 mg) was further purified by recrystallization from EtOH to yield 17 mg of crystalline product: mp 175-80 °C dec; R_f 0.3 (6:2:2 CH₃-CN-HOAc-H₂O); ¹H NMR (D₂O) δ 1.53-1.73 (m, 2H), 1.82-1.94 (m, 2H), 3.10 (t, J = 6 Hz, 2H), 3.62 (s, 3H), 3.73 (t, J = 6 Hz, 1H); ¹³C NMR (75.5 MHz, D₂O) δ 27.3, 30.9, 43.2, 57.4, 64.1, 161.7, 177.9; MS (FAB⁺) calcd for C₇H₁₇N₄O₃m/e 205.1301, found 205.1313; MS (FAB⁺) 205 (M + H)⁺; $[\alpha]^{23}_{D}$ +8.7° (c = 0.23, MeOH).

tert-Butyl N^a-Boc-N^a-((cyanoimino)phenoxymethyl)-Lornithinate (3a). Compound 5 (2.4 g, 8.32 mmol) was dissolved in 50 mL of 2-propanol and treated with Et₃N (1.17 mL, 8.4 mmol) and 19 (2.0 g, 8.4 mmol). After 1 h, the solvent was evaporated and the residue chromatographed on silica gel (4:1 hexane-EtOAc) to provide 1.6 g, 3.70 mmol, 44% yield: mp 92-4 °C; R_f 0.15 (2:1 hexane-EtOAc); ¹H NMR δ 1.42 (s, 9H), 1.48 (s, 9H), 1.6-1.95 (m, 4H), 3.46-3.54 (m, 2H), 4.17-4.27 (m, 1H), 5.14 (d, J = 7 Hz, 1H), 7.08 (d, J = 8 Hz, 2H), 7.23-7.29 (m, 1H), 7.38 (t, J = 7 Hz, 2H), 7.53 (bs, 1H); ¹³C NMR (75.5 MHz, CDCl₃) δ 25.4, 27.9, 28.2, 30.0, 42.0, 53.4, 79.7, 82.0, 115.6, 121.4, 126.4, 129.4, 151.0, 155.3, 163.8, 171.5; IR (CHCl₃) 2180 cm⁻¹; MS (FAB⁺) 433 (M + H)⁺, 377, 321, 303, 277, 214; [α]²³D - 11.8 (c = 1.06, MeOH). Anal. Calcd for C₂₂H₃₂N₄O₆: C, 61.09; H, 7.46; N, 12.95. Found: C, 61.10; H, 7.40; N, 12.82.

N^k-Boc N^s-((cyanoimino)phenoxymethyl)-L-ornithine (3b). N^{α} -Boc-L-ornithine (5.0 g, 21.5 mmol) in 2-propanol (100 mL) was treated with 19 (5.1 g, 21.5 mmol) at reflux for 3 h. The solvent was evaporated, and the residue was chromatographed on flash silica gel eluted with 80:20:1 CHCl₃-MeOH-NH₄OH to yield 6.3 g, 17 mmol, 79%: mp 119-124 °C dec; Rf 0.3 (80:20:1 CHCl₃-MeOH-NH₄OH); ¹H NMR (DMSO- d_6) δ 1.38 (d, J = 5 Hz, 9H), 1.48-1.78 (m, 4H), 3.13-3.22 (m, 1H), 3.26-3.32 (m, 1H), 3.62-3.72 (m, 1H), 6.18 (dd, J = 7, 17 Hz, 1H), 7.17 (t, J = 7 Hz, 1H), 7.25-7.31 (m, 1H), 7.39-7.48 (m, 2H); ¹³C NMR (75.5 MHz, DMSO- d_6)³³ δ 24.4, 25.5, 28.2, 29.9, 42.1, 42.5, 54.5, 77.5, 114.4, 114.8, 119.6, 121.7, 125.9, 126.2, 129.5, 130.2, 151.3, 151.8, 154.9, 159.5, 162.6, 174.9; MS (DCI) 377 (M + H)⁺, 394 (M + NH₄)⁺, 338, 321, 271; $[\alpha]^{23}_{D}$ +15.7 (c = 1.00, MeOH). Anal. Calcd for C₁₆H₃₀N₅O₄: C, 53.91; H, 8.48; N, 19.65. Found: C, 53.88; H, 8.25; N. 19.37.

tert-Butyl Na-Boc-NG-cyano-L-arginate (20a). Compound 3a (432 mg, 1.0 mmol) in EtOH (10 mL) was treated with concentrated NH4OH (2 mL) at 60 °C overnight. The solvents were evaporated, and the residue was chromatographed on silica gel eluted with 5% EtOH in CH₂Cl₂ to yield 316 mg, 0.89 mmol, 89%: mp 68-72 °C; R_f 0.2 (20:1 CH₂Cl₂-EtOH); ¹H NMR δ 1.44 (s, 9H), 1.48 (s, 9H), 1.56-1.7 (m, 2H), 1.73-1.85 (m, 1H), 3.23 (br s, 2H, 4.12 (br s, 1H), 5.38 (d, J = 7 Hz, 1H), 5.92 (br s, 3H), 6.47 (br s, 1H); ¹³C NMR (75.5 MHz, CDCl₃) δ 25.0, 28.1, 28.4, 30.5, 41.1, 50.6, 80.2, 82.5, 123.8, 156.1, 161.4, 171.7; IR (CHCl_s) 2170 $cm^{-1}; MS (DCI) 356 (M + H)^+, 373 (M + NH_4)^+, 300; [\alpha]^{23}D^{-15.6}$ (c = 1.09, MeOH). Anal. Calcd for $C_{16}H_{29}N_5O_4 0.25 H_2O$: C, 53.39; H, 8.26; N, 19.46. Found: C, 53.37; H, 8.40; N, 19.22. Alternatively, intermediate 3a (537 mg, 1.24 mmol) was dissolved in 25 mL of EtOH, and the solution was saturated with $NH_3(g)$. After 3 days, the solvent was evaporated and the residue was chromatographed on flash silica gel eluted with 20:1 CH₂Cl₂-EtOH to provide 337 mg, 0.95 mmol, 77% yield: R_f 0.2 (20:1 CH₂Cl₂-EtOH); oil; ¹H NMR (CD₃OD) & 1.45 (s, 9H), 1.47 (s, 9H), 1.54-1.82 (m, 4H), 3.17 (t, J = 6 Hz, 2H), 3.94-3.98 (m, 1H); IR (CHCl₃) 2170 cm⁻¹; MS (FAB⁺) calcd for $C_{16}H_{30}N_5O_4 m/e$ 356.2298, found 356.2310; MS (DCI) 356 (M + H)+, 373 (M + NH₄)⁺, 300; $[\alpha]^{23}$ _D -15.0 (c = 0.50, MeOH). Anal. Calcd for C16H29N5O4: C, 54.07; H, 8.22; N, 29.70. Found: C, 53.88; H, 8.25; N, 19.37.

N^α-Boc-N^G-cyano-L-arginine (20b). Intermediate 3b (376 mg, 1.0 mmol) in EtOH (15 mL) was cooled to 4 °C and saturated with NH₃(g) by bubbling for 1 min. The flask was sealed and stirred at room temperature for 24 h. The solvent was evaporated and the residue dissolved in H₂O and extracted with EtOAc. The aqueous layer was then lyophilized to yield 250 mg, 0.84 mmol, 84%: mp 120 °C dec; R_f 0.2 (70:30:1 CHCl₃-MeOH-NH₄OH); ¹H NMR (DMSO- d_8) δ 1.33 (s, 9H), 1.38-1.63 (m, 4H), 2.92-2.98 (m, 2H), 3.59-3.66 (m, 1H), 6.31 (d, J = 7 Hz, 1H), 6.78 (s, 1H); ¹³C NMR (75.5 MHz, CD₃OD) δ 26.7, 28.8, 31.1, 42.1, 56.1, 88.8, 120.5, 157.9, 163.1, 178.8; IR (film) 2180 cm⁻¹; MS (FAB⁻) calcd for C₁₂H₂₀N₅O₄ 298.1515, found 298.1516; MS (FAB⁻) 298 (M - H)⁻; [α]²³_D +7.88 (c = 1.46, MeOH).

N^G-Carbamoyl-L-arginine (21). Compound 20a (143 mg, 0.40 mmol) was treated with 5 mL of 4 N HCl in dioxane for 6 h. The reaction mixture, which had some precipitate present, was mixed with Et₂O, and the solid was collected to yield 102 mg, 0.36 mmol, 91%: mp 127 °C dec; R_f 0.2 (1:1 EtOAc–PAW); R_f 0.75 (6:2:2 CH₃CN–HOAc–H₂O); ¹H NMR (D₂O) δ 1.67–2.1 (m, 4H), 3.37 (t, J = 7 Hz, 2H), 4.08 (t, J = 6 Hz, 1H); ¹³C NMR (75.5 MHz, D₂O) δ 26.3, 29.9, 43.4, 55.6, 156.6, 158.9, 174.9, MS (DCI) 200 (M + H)⁺, 175, 157; [a]²²_D + 20.0 (c = 1.45, MeOH). Anal. Calcd for C₇H₁₃N₅O₂·2HCl-0.5H₂O: C, 28.10; H. 6.06; N, 23.41. Found: C, 28.33; H, 6.12; N, 23.35.

tert-Butyl N²-Boc-N^G-cyano-N^G-methyl-L-arginate (22a). Intermediate 3a (432 mg, 1.0 mmol) was dissolved in 5 mL of EtOH and treated with 40% aqueous MeNH₂ (344 μ L, 10 mmol) overnight at room temperature. The crude residue after solvent evaporation was chromatographed on flash silica gel eluted with 10:1 CH₂Cl₂-EtOH to yield 356 mg, 0.96 mmol, 96%: R_f 0.5 (2:1 hexane-EtOAc); R_f 0.3 (20:1 CH₂Cl₂-EtOH; R_f 0.8 (5:1 EtOAc-PAW); ¹H NMR (CD₃OD) δ 1.43 (s, 9H), 1.46 (s, 9H), 1.56-1.68

⁽³³⁾ The ¹³C NMR for **3b** displayed two conformational isomers whose signals did not coalesce when heated to 90 °C in DMSO-d₈.

(m, 3H), 1.73–1.82 (m, 1H), 2.78 (s, 3H), 3.21 (t, 2H), 3.44–4.0 (m, 1H); 13 C NMR (75.5 MHz, CD₃OD) δ 26.8, 28.3, 28.7, 28.7, 29.2, 42.1, 55.4, 80.5, 82.6, 120.2, 158.0, 161.9, 173.5; MS (DCI) 370 (M + H)⁺, 387 (M + NH₄)⁺; $[\alpha]^{23}_{D}$ –13.8 (c = 1.35, MeOH). Anal. Calcd for C₁₇H₃₁N₅O₄•0.25H₂O: C, 54.60; H, 8.49; N, 18.73. Found: C, 54.99; H, 8.44; N, 18.73.

N°-Boc-N^G-cyano-N^G-methyl-L-arginine (22b). Intermediate **3b** (300 mg, 0.80 mmol) was dissolved in 10 mL of EtOH and saturated with CH₃NH₂ (g). The solution was resaturated after 6 h and left sealed overnight at room temperature. The crude residue after concentration was chromatographed on silica gel eluted with 75:25:1 CH₂Cl₂-MeOH-NH₄OH to yield 138 mg, 0.44 mmol, 55%: $R_f 0.2$ (5:1 EtOAc-PAW); ¹H NMR (CD₃OD) δ 1.43 (s, 9H), 1.56-1.69 (m, 3H), 1.73-1.86 (m, 1H), 2.78 (s, 3H), 3.21 (t, J = 6 Hz, 2H), 3.98-4.04 (m, 1H); ¹³C NMR (75.5 MHz, D₂O) δ 27.9, 30.5, 30.8, 31.9, 43.9, 58.5, 83.9, 123.8, 160.3, 163.1, 182.4; IR (film) 2170 cm⁻¹; MS (DCI) calcd for C₁₃H₂₄N₅O₄ m/e 314.1828, found 314.1804; MS (DCI) 314 (M + H)⁺, 331 (M + NH₄)⁺; $[\alpha]^{28}_D + 7.7^\circ$ (c = 1.1, MeOH). Anal. Calcd for C₁₃H₂₂N₅O₄·0.5H₂O·0.2NH₃: C, 47.93; H, 7.61; N, 22.36. Found: C, 48.05; H, 7.62; N, 22.38.

N^G-**Carbamoyl-N**^G-**methyl-L-arginine (23).** Compound **22a** (250 mg, 0.68 mmol) was treated with 5 mL of 4 N HCl in dioxane. After 1 day, the reaction was mixed with Et₂O and the resulting solid was filtered to yield 219 mg of semisolid. The crude product was chromatographed on silica gel eluted with 6:1:1 CH₃CN-HOAc-H₂O to provide first **30** (75 mg, 0.26 mmol, 39%), followed by mixed fractions (36 mg) and finally **23** (28 mg, 0.093 mmol, 14%). For **30**: R_{f} 0.6 (6:2:2 CH₃CN-AcOH-H₂O); ¹³C NMR (75.5 MHz, D₂O)³⁴ δ 27.2, 30.4, 30.8, 43.6, 57.2, 163.2, 177.3; MS (PDMS) 214 (M + H)⁺; [α]²³_D - 0.24° (c = 1.26, MeOH). For **23**: R_{f} 0.4 (6:2:2 CH₃CN-AcOH-H₂O); R_{f} 0.25 (1:2 EtOAc-PAW); ¹⁴NMR (D₂O) δ 1.68-2.12 (m, 4H), 2.96 (s, 3H), 3.35-3.46 (m, 2H), 4.12 (t, J = 5 Hz, 1H); ¹³C NMR (75.5 MHz, D₂O) δ 26.8, 29.8, 30.8, 43.5, 55.5, 156.2, 159.1, 174.8; MS (DCI) 232 (M + H)⁺, 215, 185; [α]²³_D + 9.4° (c = 1.24, MeOH). Anal. Calcd for C₈H₁₆N₅O₂·1.0HCl·1.4H₂O: C, 34.95; H, 6.89; N, 25.47. Found: C, 35.31; H, 7.06; N, 25.08.

Synthesis of N^G-Cyano-N^G-methyl-L-arginine (30) from 22b. Compound 22b (60 mg, 0.19 mmol) was treated with 4 N HCl in dioxane and then sonicated for 5 min. The reaction mixture was filtered, and the resulting hygroscopic solid was dissolved in H₂O and purified by ion exchange (NH₄ form) eluted with 0.25 M NH₄HCO₃ to provide 48 mg (0.098 mmol, 51%). Further elution provided an additional 15 mg (0.03 mmol, 15%): R_f 0.4 (6:2:2 CH₃CN-HOAc-H₂O); ¹H NMR (D₂O) δ 1.52-1.74 (m, 2H), 1.79-1.97 (m, 2H), 2.79 (s, 3H), 3.25 (t, J = 6 Hz, 2H), 3.76 (t, 6H); ¹³C NMR (75.5 MHz, D₂O, pH 6.4) δ 27.2, 30.4, 30.7, 43.6, 57.3, 124 (CN, very broad), 163.4, 177.3; ¹³C NMR (75.5 MHz, D₂O, pH 8)³⁸ δ 30.6, 30.7, 43.6, 123.7, 163.4; IR (KBr) 2165 cm⁻¹; MS (FAB⁺) 214 (M + H)⁺; [α]²³D - 2.1° (c = 0.63, MeOH). Anal. Calcd for C₉H₁₅N₅O₂:4.75NH₄Cl·1.25H₂O: C, 19.62; H, 7.51; N, 27.88. Found: C, 19.74; H, 7.37; N, 27.98.

Synthesis of 23 from 30. Compound 30 (10 mg, 0.05 mmol) was treated with 3 mL of 3 N HCl for 2 days. The solution was diluted with H₂O and lyophilized to provide 13 mg, 0.05 mmol, quantitative yield: R_f 0.4 (6:2:2 CH₃CN-AcOH-H₂O); R_f 0.25 (1:2 EtOAc-PAW); ¹H NMR (300 MHz, D₂O) δ 1.68–2.12 (m, 4H), 2.96 (s, 3H), 3.35–3.46 (m, 2H), 4.12 (t, J = 5 Hz, 1H); ¹³C NMR (75.5 MHz, D₂O) δ 26.8, 29.8, 30.8, 43.5, 55.5, 156.2, 159.1, 174.8; MS (DCI) calcd for C₈H₁₈N₅O₃ m/e 232.1410, found 232.1398; [α]²³_D +6.4 (c = 0.28, MeOH).

tert-Butyl N^{α} -Boc- N^{α} -benzyl- N^{α} -cyano-L-arginate (24a). Intermediate 3a (432 mg, 1.0 mmol) and BzlNH₂ (240 μ L, 2.2 mmol) were refluxed in 5 mL of EtOH for 3 h. The residue after concentration was dissolved in EtOAc and washed with 0.1 M citric acid, brine, 0.5 M NaHCO₃, and brine. The organic layer was dried over MgSO₄ to yield after filtration and evaporation of the volatiles 486 mg, 1.09 mmol, quantitative: R_f 0.5 (1:1 hexane-EtOAc); ¹H NMR δ 1.41 (s, 9H), 1.45 (s, 9H), 1.52–1.78 (m, 4H), 3.16–3.34 (m, 2H), 4.06 (bs, 1H), 4.34–4.52 (m, 2H), 5.25 (d, J = 7 Hz, 1 H), 5.77 (s, 1H), 6.26–6.31 (m, 1H), 7.27–7.36 (m, 5H); ¹³C NMR (75.5 MHz, CDCl₃)³⁶ δ 25.0, 27.9, 28.3, 30.8, 41.2, 45.6, 52.8, 80.2, 82.5, 115.4, 118.7, 120.1, 127.4, 127.8, 128.8, 129.5, 137.0, 155.9, 156.3, 160.0, 171.4; IR (CHCl₃) 2162 cm⁻¹; MS (FAB⁺) calcd for C₂₃H₃₆N₅O₄ m/e 446.2767, found 446.2753; MS (DCl) 446 (M + H)⁺, 463 (M + NH₄)⁺; $[\alpha]^{23}_{\rm D}$ -9.95° (c = 2.2, MeOH).

 N^{α} -Boc- N^{G} -benzyl- N^{G} -cyano-L-arginine (24b). Intermediate 3b (200 mg, 0.86 mmol) was dissolved in 5 mL of EtOH and treated with BzlNH₂ (942 μ L, 8.6 mmol) for 1 day. The crude residue after solvent evaporation was chromatographed on silica gel eluted with 10:1 EtOAc-PAW to provide 183 mg, 0.47 mmol, 55% yield: R_{f} 0.5 (5:1 EtOAc-PAW); ¹H NMR (300 MHz, CD₃-OD) δ 1.44 (s, 9H), 1.55–1.67 (m, 3H), 1.73–1.82 (m, 1H), 3.23 (t, J = 7 Hz, 2H), 4.03–4.1 (m, 1H), 4.43 (s, 2H), 7.25–7.36 (m, 5H); ¹³C NMR (75.5 MHz, CD₃OD) δ 26.9, 28.7, 30.1, 42.2, 46.1, 54.6, 80.5, 128.1, 128.4, 129.6, 138.7, 158.0, 161.3, 176.0; IR (KBr) 2168 cm⁻¹; MS (FAB⁺) calcd for C₁₉H₂₈N₅O₄: m/e 390.2141, found 390.2130; MS (DCI) 390 (M + H)⁺, 407 (M + NH₄)⁺, 347; $[\alpha]^{23}_{D}$ +4.5° (c = 1.0, MeOH).

tert-Butyl N^a-Boc-N^a-cyano-N^a'-(dimethylamino)-L-arginate (25). Intermediate 3a (129 mg, 0.3 mmol) in EtOH (3 mL) was treated with Me₂NNH₂ (60 μ L, 0.8 mmol) for 7 h. The crude residue after solvent evaporation was chromatographed on silica gel eluted with 20:1 CH₂Cl₂-EtOH to yield 83 mg, 0.21 mmol, 70%: R_f 0.2 (1:1 hexane-EtOAc); ¹H NMR δ 1.38 (s, 9H), 1.40 (s, 9H), 1.48-1.78 (m, 4H), 2.51 (s, 6H), 3.17-3.24 (m, 2H), 4.06-4.14 (m, 1H), 5.04-5.10 (m, 1H), 6.26 (t, J = 5 Hz, 1H), 7.02 (s, 1H); ^{1a}C NMR (75.5 MHz, CDCl₃) δ 25.2, 27.9, 28.2, 30.0, 40.2, 47.2, 53.4, 79.7, 82.1, 117.4, 155.3, 158.8, 171.4; IR (film) 2175 cm⁻¹; MS (DCI) 399 (M + H)⁺, 384, 343; $[\alpha]^{23}_D$ -11.1° (c = 1.08, MeOH). Anal. Calcd for Cl₁₈H₃₄N₆O₄: C, 54.25; H, 8.60; N, 21.09. Found: C, 54.08; H, 8.75; N, 20.80.

tert-Butyl Na-Boc-NG-cyano-NG', NG'-dicyclohexyl-L-arginate (26). Intermediate 3a (500 mg, 1.16 mmol) in EtOH (5 mL) was treated with dicyclohexylamine (DCHA, 460 µL, 2.31 mmol), and the solution was heated to reflux. After 4 h, additional DCHA (460 μ L) was added and reflux was continued overnight. The residue after evaporation of solvent was dissolved into EtOAc and washed with 0.1 M citric acid, brine, 0.5 M NaHCO₃, and brine. The organic layer was dried (MgSO₄), filtered, and concentrated to yield 567 mg, 1.09 mmol, 94% of crude product oil: $R_f 0.6$ (1:1 hexane-EtOAc); ¹H NMR δ 1.13 (tt, J = 2, 13 Hz, 2H), 1.3-1.4 (m, 6H), 1.44 (s, 9H), 1.46 (s, 9H), 1.6-1.75 (m, 12H), 1.78-1.88 (m, 4H), 3.23-3.32 (m, 1H), 3.43-3.64 (m, 2H), 4.16 (bs, 1H), 4.92 (t, J = 3 Hz, 1H), 5.21 (d, J = 7 Hz, 1H); ¹³C NMR (75.5 MHz, CDCl₃) & 25.3, 26.0, 26.1, 28.0, 28.3, 30.4, 31.7, 31.8, 43.2, 53.6, 57.9, 60.4, 79.9, 82.3, 117.7, 156.3, 159.4, 171.5; IR (CHCl₃) 2160 cm⁻¹; MS (FAB⁺) calcd for C₂₈H₅₀N₅O₄ m/e 520.3863, found 520.3849; MS (DCI) 520 (M + H)⁺; $[\alpha]^{23}$ _D -3.5° (c = 1.0, MeOH). Anal. Calcd for C₂₈H₄₉N₅O₄·0.5H₂O: C, 63.61; H, 9.53; N, 13.25. Found: C, 63.74; H, 9.37; N, 13.50;

N^α-**Boc**-**N**^G-**cyano**-**N**^G-**dimethylarginine** (28). Compound **3b** (155 mg, 0.67 mmol) in EtOH (5 mL) was saturated with (CH₃)₂NH (g) and sealed overnight at room temperature. After solvent evaporation, the crude residue was chromatographed on silica eluted with 5:1 EtOAc-PAW to provide 71 mg, 0.22 mmol, 32% yield: R_f 0.2 (5:1 EtOAc-PAW); ¹H NMR (300 MHz, CD₃-OD) δ 1.43 (s, 9H), 1.62–1.73 (m, 3H), 1.8–1.88 (m, 1H), 3.03 (s, 6H), 3.42 (t, J = 6 Hz, 2H), 4.03–4.08 (m, 1H); ¹³C NMR (75.5 MHz, methanol-d₄) δ 27.6, 28.7, 30.3, 39.0, 43.5, 55.1, 80.4, 120.0, 158.0, 161.0, 176.8; IR (KBr) 2169 cm⁻¹; MS (DCI) calcd for C₁₄H₂₈N₅O₄ m/e 328.1985, found 328.1979; MS (DCI) 328 (M + H)⁺, 345 (M + NH₄)⁺, 384, 285, 272; [α]²³_D+10.4° (c = 1.4, MeOH).

 N^{G} -Cyano-L-arginine (29). Compound 20b (100 mg, 0.33 mmol) was treated with 4 mL of 4 N HCl in dioxane for 5 min. The reaction solution was mixed with Et₂O and filtered to provide a hygroscopic solid. The semisolid was dissolved into 2 mL of 1 M NH₄HCO₃ and purified by ion exchange (NH₄ form) eluted with H₂O to provide 50 mg, 0.13 mmol, 40%: mp >250 °C; R_f 0.7 (6:2:2 CH₃CN-AcOH-H₂O); ¹H NMR (D₂O) δ 1.53-1.78 (m, 2H), 1.78-2.0 (m, 2H), 3.23 (t, J = 6 Hz, 2H), 3.74 (m, 1H); ¹³C NMR (75.5 MHz, D₂O) δ 27.2, 30.8, 43.8, 57.3, 123.3, 164.2, 177.9; IR (KBr) 2180 cm⁻¹; MS (DCI) 200 (M + H)⁺, 217 (M + NH₄)⁺;

⁽³⁴⁾ For complete ¹³C NMR data see 30 from 22b below.

⁽³⁵⁾ At pH 7, the remaining resonances were not observable although the cyano resonance was sharp; at pH 6.4, all peaks were sharp except the cyano resonance.

⁽³⁶⁾ The ¹³C NMR for 24a displayed two geometric isomers whose signals did not coalesce when heated to 130 °C in DMSO- d_6 .

MS (FAB-) calcd for $C_7H_{12}N_6O_2 m/e$ 198.0991, found 198.0990; $[\alpha]^{23}D$ 2.1° ($c = 1.0, H_2O$). Anal. Calcd for C_7H_{13} -N₅O₂·1.0H₂O·3.0NH₄Cl: C, 22.26; H, 7.21; N, 29.67. Found: C, 22.22; H, 6.80; N, 29.72.

 N^{0} -Benzyl- N^{0} -cyano-L-arginine (31). Compound 24b (50 mg, 0.13 mmol) was treated with 4 N HCl in dioxane for 5 min. The reaction mixture was diluted with 3 mL of H₂O and immediately placed onto ion exchange (H⁺ form) and washed with H₂O. The product was eluted from the column with 0.5 N NH₄OH to provide 32 mg, 0.08 mmol, 62% yield: R_f 0.4 (1:1 EtOAc-PAW); ¹H NMR (300 MHz, D₂O) δ 1.66-2.0 (m, 4H), 3.23 (t, J = 7 Hz, 2H), 4.09-4.13 (m, 1H), 4.64 (s, 2H), 7.36-7.48 (m, 5H); ¹³C NMR (75.5 MHz, D₂O) δ 26.8, 29.5, 43.8, 47.7, 55.2, 129.9, 131.1, 132.0, 138.0, 155.6, 158.7, 174.1; IR (KBr) 2170 cm⁻¹; MS (FAB⁺) calcd for C₁₄H₂₀N₅O₂ m/e 290.1617, found 290.1610; MS (FAB⁺) 290 (M + H)⁺, 247; $[\alpha]^{22}_{D}$ -0.93° (c = 0.75, 3:1 MeOH-H₂O).

N^a-**Boc**-**N**^G-**cyano**-**N**^G-**methoxy**-**L**-**arginine** (27). Intermediate **3b** (100 mg, 0.26 mmol) in EtOH (5 mL) was treated with CH₃ONH₂·HCl (217 mg, 2.6 mmol) and Et₃N (840 μ L, 6 mmol) at 60 °C in a sealed tube overnight. After solvent evaporation, the crude residue was chromatographed on silica eluted with 5:1 EtOAc-PAW to yield 64 mg, 0.19 mmol, 75%: R_{1} 0.3 (5:1 EtOAc-PAW); ¹H NMR (300 MHz, CD₃OD) δ 1.44 (s, 9H), 1.6–1.7 (m, 3H), 1.78–1.87 (m, 1H), 3.27 (t, J = 6 Hz, 2H), 3.69 (s, 3H), 3.98 4.06 (m, 1H); ¹³C NMR (75.5 MHz, CD₃OD) δ 14.5, 22.0, 26.8, 28.8, 30.7, 41.6, 52.9, 55.7, 80.4, 158.0, 162.4; IR (KBr) 2178 cm⁻¹; MS calcd for C₁₃H₂₄N₅O₅ m/e 330.1777, found 330.1768; MS (DCI) 330 (M + H)⁺, 347 (M + NH₄)⁺, 233; $[\alpha]^{23}_{D}$ +6.8° (c = 0.22, MeOH).

N^G-Cyano-N^{G'}-methoxy-L-arginine (32). Compound 27 (24 mg, 0.073 mmol) was treated with 4 N HCl in dioxane (2 mL) under N₂ for 5 min. The reaction was mixed with Et₂O, and the resulting solid was collected by vacuum filtration. The crude product was dissolved in H₂O, purified by ion exchange (H⁺ form), and eluted with 0.5 N NH₄OH to provide 8.3 mg, 0.036 mmol, 50% yield: R_f 0.2 (1:1 EtOAc-PAW); ¹H NMR (300 MHz, D₂O) δ 1.55–1.74 (m, 2H), 1.78–1.94 (m, 2H), 3.25–3.31 (m, 2H), 3.72 (s, 3H), 3.73 (t, J = 6 Hz, 1H); IR (KBr) 2175 cm⁻¹; MS (DCI) calcd for C₈H₁₆N₆O₃ m/e 230.1253, found 230.1251; MS (DCI) 230 (M + H)⁺; [α]²⁸D +1.4° (c = 0.22, H₂O).

tert-Butyl N^α-Boc-N⁻(5-amino-2H-1,2,4-triazol-3-yl)-L-ornithinate (33). Intermediate 3a (250 mg, 0.58 mmol) in EtOH (2 mL) was treated with NH₂NH₂·H₂O (150 μ L, 3.0 mmol). After 2 h, the solvent was evaporated and the residue chromatographed on silica gel eluted with 90:10:1 CH₂Cl₂-EtOH-NH₄OH to yield 134 mg, 0.36 mmol, 62%; R_f 0.5 (80:20:1 CH₂Cl₂-EtOH-NH₄OH); ¹H NMR δ 1.46 (s, 9H), 1.48 (s, 9H), 1.6-1.74 (m, 3H), 1.77-1.88 (m, 1H), 3.16-3.26 (m, 1H), 3.3-3.42 (m, 1H), 4.15-4.23 (m, 1H), 5.38 (d, J = 7 Hz, 1H); ¹³C NMR (75.5 MHz, CDCl₃) δ 25.8, 28.0, 28.4, 30.1, 42.9, 53.8, 79.9, 82.0, 155.9, 158.9, 159.1, 172.1; MS (DCI) 371 (M + H)⁺; [α]²²_D -12.5 (c = 1.15, MeOH). Anal. Calcd for C₁₆H₃₀N₆O₄ 0.8 H₂O: C, 49.93; H, 8.28; N, 21.84. Found: C, 50.07; H, 8.16; N, 21.49.

tert-Butyl N°-Boc-N°-(5-amino-2-methyl-2H-1,2,4-triazol-3-yl)-L-ornithinate (34b). Intermediate 3a (340 mg, 0.79 mmol) in EtOH (5 mL) was treated with MeNHNH₂ (82 μ L, 1.5 mmol) for 3 days. After solvent evaporation, the residue was chromatographed on flash silica gel eluted with 20:1 CH₂Cl₂-EtOH to yield 34b, 223 mg, 0.58 mmol, 74%. For 34b: R_{f} 0.3 (9:1 CHCl₃-MeOH); ¹H NMR δ 1.44 (s, 9H), 1.46 (s, 9H), 1.66–1.78 (m, 3H), 1.80–1.90 (m, 1H), 3.32–3.42 (m, 5H), 3.40 (bs, 2H), 4.16–4.23 (m, 1H), 4.56–4.62 (m, 1H), 5.37 (d, J = 7 Hz, 1H); ¹³C NMR (75.5 MHz, CDCl₃) δ 25.2, 28.0, 28.2, 30.5, 32.5, 43.3, 53.2, 79.7, 82.0, 154.8, 155.6, 159.7, 171.6; MS (DCI) 385 (M + H)⁺; [α]²⁸_D -15.0 (c = 0.40, MeOH). Anal. Calcd for $C_{17}H_{32}N_6O_4$ 0.5 H_2O : C, 51.89; H, 8.45; N, 21.36. Found: C, 51.88; H, 8.25; N, 21.22. Further elution from the column provided a mixture of **34b** and *tert*-Butyl N^{α}-Boc-N^{δ}-(5-amino-1-methyl-1*H*-1,2,4-triazol-3-yl)-L-ornithinate (**34a**) (89 mg, 0.23 mmol, 29%). For **34a**: R_f 0.25 (9:1 CHCl₃-MeOH); ¹H NMR (300 MHz, CDCl₃) δ 1.44 (8, 9H), 1.45 (8, 9H), 1.6-1.74 (m, 3H), 1.8-1.9 (m, 1H), 3.18-3.22 (m, 2H), 3.45 (s, 3H), 4.18 (bs, 2H), 4.54 (bs, 1H), 5.21 (d, J = 6 Hz, 1H), 5.33 (d, J = 7 Hz, 1H); ¹³C NMR (75.5 MHz, CDCl₃) δ 25.8, 28.0, 28.3, 30.3, 33.1, 43.1, 53.8, 79.5, 81.7, 153.0, 155.4, 161.1, 171.9.

N⁸-(5-Amino-2H-1,2,4-triazol-3-yl)-L-ornithine (35). Compound **33** (100 mg, 0.27 mmol) was treated with 5 mL of 1.4 M HCl in HOAc. After 1 h a solid had formed that was collected and rinsed with Et₂O. The crude product was chromatographed on neutral alumina eluted with 1:1 EtOAc-PAW to give 53 mg, 0.21 mmol, 78% yield. The product was then purified by ion exchange (H⁺ form) eluted with 0.25 N NH₄OH to remove any alumina that might be present. The yield from the ion-exchange column was 30 mg: mp 250-5 °C; R_f 0.2 (1:2 EtOAc-PAW); ¹H NMR (D₂O-CD₃OD) δ 1.55-1.73 (m, 2H), 1.79-1.97 (m, 2H), 3.17 (t, J = 6 Hz, 2H), 3.70 (t, J = 6 Hz, 1H); ¹³C NMR (75.5 MHz, D₂O/CD₃OD) δ 25.7, 29.2, 43.2, 55.6, 159.6, 160.6, 176.1; MS (FAB⁺) calcd for C₇H₁₅N₆O₂ m/e 215.1269, found 215.1256; MS (FAB⁺) 215 (M + H)⁺; $[\alpha]^{23}_{D}$ +16.4 (c = 1.17, MeOH).

Synthesis of the D-Enantiomer of 35. The D-enantiomer of 5 (100 mg, 0.35 mmol was dissolved in 5 mL of 2-propanol and treated with 19 (91 mg, 0.38 mmol). After 2 h, the solvent was evaporated, and the resulting residue was dissolved in 5 mL of EtOH and treated with hydrazine hydrate ($34 \mu L$, 0.70 mmol) for 1 day. After solvent evaporation, chromatography of the residue on silica gel eluted with 80:20:1 CHCl₃-MeOH-NH₄OH provided D-33, 121 mg, 0.33 mmol, 94% yield: R_f 0.5 (80:20:1 CHCl₃-MeOH-NH₄OH); MS (DCI) 371 (M + H)⁺; $[\alpha]^{23}_D$ +13.0 (c = 1.19, MeOH). Compound D-33 was treated with 5 mL of 4 N HCl in dioxane for 3 h, and the resulting solid was collected and rinsed with Et₂O to provide D-35, 4.9 mg, 0.02 mmol, 37% yield: R_f 0.2 (1:2 EtOAc-PAW); MS (DCI) 215 (M + H)⁺; $[\alpha]^{23}_D$ -14.5 (c = 0.38, MeOH).

Chiral HPLC Results: D-35, $t_{\rm R} = 5.6$ min; L-35, $t_{\rm R} = 10.1$ min. For L-35: peak area ratio L/D 99.25:0.75 = 98.5% ee. For D-35: no L-isomer detected, >98% ee.

N⁸-(5-Amino-2-methyl-2H-1,2,4-triazol-3-yl)-L-ornithine (36). Compound 34b (92 mg, 0.24 mmol) was treated with 5 mL of 1:1 TFA-CH₂Cl₂ for 2 h. The reaction was mixed with Et₂O, and the resulting solid was filtered to yield 44 mg, 0.13 mmol, 54%, of very hygroscopic solid: R_f 0.25 (6:2:2 CH₃CN-AcOH-H₂O); ¹H NMR (D₂O) δ 1.51-2.03 (m, 4H), 3.36 (t, J = 7 Hz, 2H), 3.43 (s, 3H), 3.88 (t, J = 5 Hz, 1H); ¹³C NMR (75.5 MHz, D₂O) δ 27.2, 30.2, 36.2, 45.9, 56.7, 151.6, 153.8, 176.4; MS (FAB⁺) calcd for C₈H₁₇N₆O₂ m/e 229.1413, found 229.1396; MS (DCI) 229 (M + H)⁺; [α]²³_D +8.7° (c = 0.94, MeOH).

Acknowledgment. We thank D. Whittern and S. Spanton for NMR assistance, M. Fitzgerald for chiral HPLC determinations, and W. Arnold for synthesis of some of the chemical intermediates.

Supplementary Material Available: ¹H spectra for compounds 1a,b, 6, 7, 11b, 11c, 14, 15, 20b, 24a,b, 27, 28, 29, 31–32, 35, and 36, ¹³C spectra for compounds 1b, 2, 11a,c, and 12, ROESY spectrum for the mixture of compounds 34a,b, and NOE data for compounds 17 and 18 (27 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.